CEMHYD3D: Overview and Current Status

Dale P. Bentz
Building and Fire Research Laboratory
6/13/00

Model Characteristics

- Three-dimensional (100 μm on a side)
- Multi-size, multi-phase cement particles
 - representative of real cement of interest
- silica fume, fly ash (future- slag, kaolin)
- gypsum, hemihydrate, and/or anhydrite sulfate sources
- simulates dissolution, diffusion, & reaction

Inputs to CEMHYD3D

- Cement (mineral admixture) particle size distribution
- cement bulk composition and surface composition
- apparent activation energies for cement and mineral admixtures
- volume fraction of aggregates
- curing conditions
 - isothermal/ adiabatic/ temperature profile
 - maturity method principles
 - saturated/ sealed/ drying
 - self-desiccation and creation of "empty" porosity

Outputs from CEMHYD3D

- Degree of hydration vs. time
 - all phase volume fractions
- chemical shrinkage vs. time
- heat release vs. time
 - adiabatic heat signature
- compressive strength (Power's gel-space ratio)
- diffusivity (w/c, α , V_{agg} , M_{SF})
- percolation of porosity (CH) -- durability
- percolation of solids -- setting
- ITZ microstructure
 - phase fractions vs. distance from aggregates

Model Usage

- Academia (education and Ph. D. research)
 - U.S. (ACBM, UC Berkeley, Georgia Tech, Tennessee Tech)
 - France (Cachan)
 - The Netherlands (Twente)
 - Denmark (Technical University of Denmark)
 - Japan (Tokyo Institute of Technology)
 - China
 - South Africa (Capetown)

Model Usage

- Industry
 - Germany (Dyckerhoff Zement)
 - France (CSTB)
 - The Netherlands
- Government
 - Waterways Experiment Station

Studies to Date Using Model

- Calibration/Prediction studies
 - heat release and adiabatic heat signature
 - degree of hydration
 - chemical shrinkage
 - compressive strength
- Effects of cement PSD on properties
 - coarser cements for low w/c ratio concretes
 - early age autogenous properties and cracking

Heat of Hydration

- Determine heat of hydration by monitoring how much of each phase reacts/forms during each cycle
- Base results on heats of formation of each compound or on measured heats of hydration of phases

•	Compound	Heat of Hydration

•	C_3S	517 J/g
_	C_3D	JIIJg

•
$$C_2S$$
 262 J/g

•
$$C_3A$$
 1144 J/g

•
$$C_4AF$$
 725 J/g

- Taylor, H.F.W., Cement Chemistry, 1992.
- Fukuhara et al., Cem Concr Res, 11, 407-414, 1981.

Heat of hydration

Temperature Calculation for Adiabatic Conditions

 Update heat released and heat capacity after each cycle of hydration model and calculate T rise via:

$$- \Delta T = [H(I)-H(I-1)]/C_p(I)$$

- H(I) is heat released through cycle I
 - H(I) is based on heats of reaction of clinker phases
- C_p(I) is heat capacity of concrete after cycle I
 - heat capacity adjusted for imbibition of water into cement paste and conversion of free to bound water

Predicted Adiabatic Heat Signature

Predicted Adiabatic Heat Signature

Prediction of Compressive Strength

 Use gel-space ratio theory of Powers and Brownyard

$$-X = (0.68 * \alpha)/(0.32 * \alpha + w/c)$$
$$-\sigma_c = A * X^n \qquad (n=2.6 \text{ to } 3.0)$$

- Calibrate A via measured 3-day compressive strength (assume n=2.6)
- Use hydration model to predict X vs. time and calculate 7-day and 28-day compressive strengths to compare to experiment

Compressive Strength Prediction

Cement PSD and Properties

- Cement finenesses have increased dramatically from the 1950's (250-300 m²/kg) to present date (350-400 m²/kg)
- High performance concrete mixture proportions substantially different from conventional ones (lower w/c ratio, silica fume, etc.)
- Question: Have cements been optimized for HPC mixture proportions? --> CEMHYD3D

Systems Examined

Clinker ground to different finenesses

$$-$$
 <5 μ m> 643 m²/kg <10 μ m> 520 m²/kg

$$- < 15 \mu m > 387 \text{ m}^2/\text{kg} < 20 \mu m > 296 \text{ m}^2/\text{kg}$$

$$-$$
 <25 µm> 254 m²/kg <30 µm> 212 m²/kg

• Composition: C₃S- 56.3 %, C₂S- 24.7 %, C₃A- 0.6 %, C₄AF- 13.5 %, Hemi- 4.6-5 %

2-D slices from initial 3-D cement microstructures

643 m*m/kg w/c=0.35

387 m*m/kg

254 **m*m/**kg

212 **⊪™**/kg

Note the increase in particle spacing (pore size) for the two coarser cements (254 and 212)

Chemical Shrinkage

time=0.125*cycles

Internal Relative Humidity

Autogenous Shrinkage

Conclusions

- In HPCs, coarser cements:
 - reduce early hydration and heat release (and strength!)
 - enhance "curability" by shifting depercolation of capillary porosity to lower values
 - increase diffusivities at early times, but result in equivalent diffusivities at longer times (equivalent hydration)
 - reduce internal RH reduction and autogenous strains and stresses

What's missing?

- Better modeling of influence of sulfate
 - work in progress with Dyckerhoff Zement
- Modeling of influence of alkalies
 - some work done for a Ph. D. in The Netherlands
- Modeling of slag, kaolin, others
 - ongoing experimental studies to clarify mechanisms and reactions
- Modeling of influence of specific chemical admixtures

_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

